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Robots hold the promise of helping us solve many of society’s greatest challenges, from feed-
ing the planet to caring for an aging population. Robots have seemingly been on the verge of
pervasive deployment among people for decades, and yet there are virtually no commercially
viable personal robots on the market. To achieve such deployment, we need to gain an under-
standing of the science of robot systems. Robots are complex, engineered, intelligent systems
built from many interacting components. From these interactions arise emergent behaviors that
must be studied and opportunities for building inherently robust robot systems. My research
addresses both the science and engineering of robot systems using algorithms for planning,
perception, control, manipulation, learning, and human-robot interaction.

1 Defining the Robot Systems Problem
The study of robot systems considers trade-offs that arise when components are combined

to build complex, intelligent, embodied systems. I have long led by example in illustrating
the importance of systems-level thinking in robotics research [1–12]. In contrast, much of the
robotics research community focuses on either a particular application or a component in iso-
lation, such as planning, sensing, mapping, localization, and control. Often neglected are the
emergent phenomena that occur when putting components together. These phenomena should
be understood at a level that transcends particular applications. Scientific questions surrounding
these phenomena comprise one major goal of my research.

On the engineering side, I am interested in building robot systems that can function for pro-
longed periods of time, whether working for humans or with them. These systems must provide
a variety of assurances in order to be trustworthy, including interpretability, responsiveness, and
interactivity. Superficially, a focus on systems appears to compound the many research problems
faced by those who study the components in isolation, but a more sophisticated view reveals
synergies that simplify rather than complicate the picture. As Eisenhower noted, if you can’t
solve a problem, make it bigger. I discuss two areas of recent work:

• Robots working for people. When a robot acts on behalf of people, it must be robust
to unpredictable and changing circumstances. Contemporary machine learning approaches
promise to allow robots to capture and generalize complex patterns from training data, but
they come without assurances that instill trust. In Section 2, I describe robots that learn
to generalize reliably by hybridizing learning techniques with traditional methodologies.

• Robots working with people. In order for a robot to work effectively on a team with
people, it must understand the innate human practice of implicitly conveying information.
Implicit communication is so innate that people assume robot teammates use it as humans
do [13]. In Section 3, I discuss robot systems that can participate fully and responsively to
the needs of the team using the ability to recognize and generate implicit communication.

2 Systems That Act on Humans’ Behalf Must Provide Assurances
Robotics engineers have long enjoyed the ability to construct whatever internal algorithms

and representations best accomplish the mission. These traditionally hand-designed systems
were grounded in logical principles that reassured us that they would function predictably, but
the assumptions that were built into these systems limited their generalizability in the complex,
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messy real world. Nowadays, many powerful machine learning techniques learn subtleties of
real phenomena like physics and human behavior, yet modern learning-based techniques make
no assurances of performance and interpretability. Most future autonomous robot systems will
need to operate out in the world without a trained human expert standing by to take control if
something goes wrong. I build systems that combine modern machine learning with traditional
methods in order to provide necessary assurances such as interpretability and interactivity.

Hybrid autonomy. A powerful way to mitigate the limitations of autonomy is to leverage
assistance from human bystanders. To achieve this, robots must learn to communicate like peo-
ple. I built a distributed, robotic assembly system called IkeaBot that accomplishes this. Besides
being the first autonomous robot system to build Ikea furniture, IkeaBot’s importance
stems from its adaptability. The system intelligently reconfigures itself and can build a new prod-
uct in minutes, whereas the same transition for traditional factory robots could take experts a
week to complete. IkeaBot’s generality gives rise to a nearly endless list of very low-probability
failures. IkeaBot therefore augments its autonomy by delegating resolution of unhandled failures
to people [5]. To resolve these failures, the system makes a spoken help request. My team built a
learned semantics model that converts a symbolic internal representation of a system failure into
natural language that maximizes the chance of a human correctly interpreting the help request.
The failure resolution system was the first to be able to acquire a variety of sophisticated help
from untrained, situationally-unaware humans. Previous systems, in contrast, place cognitive
load on people and require expertise to diagnose and repair failures. The IkeaBot system paper
was a finalist for the Best Automation Paper award at ICRA 2013 [4], and the failure
resolution work received the Best Paper award at RSS 2014 [14]. I delivered the IkeaBot
system software to my sponsor, Boeing, for deployment on their airplane assembly line.

Figure 1: DeepMPC masters the
complex dynamics of food cutting
by solving the dynamics and con-
trol problems separately [8].

Hybrid methodology. One way to extend the generalizabil-
ity of machine learning is to hybridize it with established robotics
techniques. My team pioneered a method called DeepMPC to per-
form control on systems with complex dynamics [8]. The approach
combines a learned representation of the dynamics model with a
standard model-predictive controller. Many researchers are try-
ing to develop learned direct control policies, but such approaches
tend to generalize poorly. Our approach, in contrast, is much more
versatile since it decouples the learned dynamics model from the
well-studied classic control problem. In this work, we focused on
the dynamics of food cutting (Figure 1). Our method has an or-
der of magnitude lower sample complexity than competing
approaches. By varying cutting speed and force, the robot can adapt to dozens of different
food consistencies that it was not trained on. The controller adapts online by discovering
manipulation strategies, such as slicing, sawing, and chopping. I coadvised Ph.D. student
Ian Lenz on this project and oversaw the completion of Lenz’s thesis in 2015. He became a
Postdoctoral Researcher with Prof. Andrea Thomaz (ECE, University of Texas at Austin).

Hybrid structure. The end-to-end deep learning approach to building robot systems cir-
cumvents many hard engineering decisions involving structure and intermediate representation.
In its pure form, this approach obviates the traditional computational modules used by robots,
such as perception, mapping, planning, and control. Recognizing that there is wisdom embedded
in traditional robot architectures, my team has replicated this global structure within a neural
network. We have developed a robot system capable of visuomotor navigation (from pixels to
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control inputs) of a quadcopter guided by natural language commands [15, 16]. The network is
structured as a series of maps that are used for perception, planning, and control. A consequence
of this architecture is that the network is interpretable. It is straightforward to see by inspection
of the network where objects of interest are located in the map as well as motion plans and
goals. These traits enable us to articulate and test meaningful properties of the neural network
that would be impossible with an opaque end-to-end system. My team has also demonstrated
sim-to-real domain transfer with this system, which enables the robot to train almost entirely
in simulation (thousands of trials) with only tens of real quadcopter training exam-
ples [12]. We achieved this result by exploiting the system architecture to isolate real robot
training to a small functional unit within the overall network. As a result, the system is capable
of generalizing effectively to new environments and landmarks. This work was supported by a
Young Investigator Program award from AFOSR as well as several Amazon research awards.

Future work. We expect robots to generalize appropriately beyond their training data even
when we cannot precisely specify what correct behavior looks like. Often, this reduces to the Pot-
ter Stewart test, “I know it when I see it.” Yet machine learning methods face a danger of fooling
us into overestimating their efficacy [17], particularly in robotics. Benchmarks compare compet-
ing algorithms but also optimize them to excel on the benchmark itself, sometimes at the loss
of overall performance. This highlights the danger of relying solely on empirical validation that
is specific to a single task. I am a leader in deploying the full range of validation tools for robot
systems, like proofs [18–20], formal verification [21], scalability [22], ablation studies [12, 15], and
human subject studies of the integrated system [5, 10]. Using the instruction-following quad-
copter, I will explore how these tools can be leveraged holistically to validate generalization with
concrete assurances by hybridizing these techniques with data-driven benchmarking methods.

3 Communication and Action Within a Team Are Entangled
An important class of systems is human-robot teams. In building robots that work effectively

with humans, the fundamental challenge is to perform joint computation between robots and
humans. People already are capable of performing joint computation with one another: we call
it teamwork. I seek to understand the essential properties of teamwork and apply them to robots.
Achieving this goal requires not only new robot-human interfaces but also new robot algorithms
and representations that mirror human computation.

Figure 2: A human user gestures
stop while saying “It’s hot!”. The
robot uses its knowledge of implicit
communication to understand the
meaning that it should not grasp
the soldering iron by its tip [9].

One prominent property of human teamwork is the entangle-
ment of action and communication. Any observable action per-
formed within a team communicates to the team, regardless of
whether its intent is primarily communicative or functional. Hu-
man teams routinely leverage this communication for situational
awareness and efficiency (Figure 2). In robotics, communication
and action are typically approached as separate problems, but
robots will not be accepted as peers until they can understand
the deeper significance of human actions and also choose their
own actions carefully to communicate the correct messages to
human teammates. I am generating major advances in a robot’s
ability to reason holistically about action and communication.

Implicit communication framework. People perform ac-
tions both for communicative and functional purposes, but the
line separating the two is decidedly blurry. I was the PI on a $1M grant from ONR that studied
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the entanglement of action and communication in a human-robot team. I described and for-
malized the phenomenon of implicit communication [9], which describes the method by which
people intuitively encode and decode communicative meaning within actions. Humans are so ac-
customed to communicating by implicit means that they are often later unable to recall whether
they learned a particular fact implicitly or explicitly [23]. Since robots traditionally communi-
cate only explicitly, they miss half of the conversation. My research provides a mathematical
framework that unifies diverse results from the fields of robotics, linguistics, and psychol-
ogy to form a single computational mechanism for implicit communication that has far-reaching
consequences across many communities. This result will empower a social intelligence for robots
that generalizes across diverse tasks and robot designs to a much greater degree than the state
of the art. This research was a finalist for the Best Technical Paper award at HRI 2017 [9].

Figure 3: Our socially-competent
robot navigates among people
by modeling the group’s motion
topologically [10, 24–29].

Social navigation. Navigating a mobile robot in a crowd
of people has commonly been thought of as a collision avoidance
problem: humans move how they want, and robots must react ap-
propriately. Yet this perspective neglects the degree to which the
participants are interdependent. I am the first to recognize and
study robotic social navigation as a first-class example of team-
work, and these insights have led to the first socially-competent
robot for navigation among pedestrians. To support this work, I
am the computational co-PI on three different grants from the
NSF bringing in over $3M to study social robot navigation.

Recent results in my lab show the link between action and
communication during social navigation. My team has focused on
structures from algebraic topology, particularly the braid group,
to represent possible motions of individual human or robot agents
in a group. These topological representations allow a robot to gen-
erate motions that balance the objectives of collision avoidance
and communication of intentions to and from human pedestri-
ans [24, 28] (Figure 3). This pedestrian navigation algorithm is the first to consider the
interaction of the robot with an arbitrary, scalable number of people moving intu-
itively in real time. The reactive control problem for social navigation requires that a robot
be highly reactive by both interpreting human intentions and expressing its own intentions in
real time [10, 26]. We formulated a Hamiltonian dynamical system that conserves energy by fol-
lowing a specified braid [27, 29]. Compared to gradient-descent-based optimizers, this method is
orders of magnitude more efficient and is capable of following arbitrary braids cor-
rectly while also optimizing for other path-shape criteria like social signaling. I graduated Ph.D.
student Christoforos Mavrogiannis on this research in March 2019. He is now a Postdoctoral
Research Associate with Prof. Siddhartha Srinivasa (CSE, University of Washington).

Action as delegation. Building on the insights from these results, I began to explore the
general role of actionable implicit communication, in which teammates implicitly delegate actions
for others to perform. I found a simple model of this phenomenon in the collaborative card game
Hanabi [11]. My team showed that using an actionable implicit communication strategy can
increase task performance by about 50% over a pure information strategy. Despite this gain, our
web-based human user study paradoxically revealed no benefit to the implicit strategy in live
gameplay with an AI. The web interface supports the full game rules, but its lack of embodied
copresence appears to block effective teamwork. This result suggests the fast-growing research
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effort in pure-software Hanabi AIs [30–32] is barking up the wrong tree: embodiment is a vital
component of human Hanabi play, which motivates the study of Hanabi strategy using robots.
This paper won Best Paper Honorable Mention at CHI 2019 [11].

Future work. My lab recently conducted an exploratory study of how Hanabi players use
implicit social cues to guide their partner’s decisions. We found that people bend the rules of
the game, sometimes unknowingly, by subtly “leaking” implicit information over a variety of
natural modalities. Although this is technically cheating in the game, it is good teamwork in any
other context. We are currently building an embodied Hanabi-playing robot system that will
employ the same tactics to leak implicit information to human players. In a controlled laboratory
environment, we will measure the effect of these subtle behaviors on teamwork quality. We will
fold these lessons back into a broader theory of communication and action in teams. Then we
will build domain-independent robot skills that leverage intuitive human understanding of a
situation to implicitly communicate task status, delegate activities, and coordinate goals.

4 Future Directions
In my three years at MIT, I exposed and solved several important robot systems problems.

My five years at Cornell culminated in robot systems advances that enable effective coordination
and collaboration with people. I plan to pursue two new areas in the next five years.

Figure 4: The Baxter Deli system
can take verbal orders and serve
food to customers. By manipulat-
ing success and failure, we use it
as a testbed for how people form
mental models of robots.

Mental models for human-robot teamwork. I am the PI
on a recent ONR grant worth $2.6M to build computational mod-
els that robots can use to understand human teammates. I am
partnering with Prof. Melissa Ferguson (Psychology, Cornell) and
Prof. Julie Shah (Aeronautics and Astronautics, MIT) to advance
the psychology of impression formation and develop algorithms
that enable robots to learn mental models of human teammates.
Using these models, we will investigate how robots can better
calibrate human expectations to improve team performance.

In preliminary work, we developed new methods for the use of
robots in human experiments to study the psychology of impres-
sion formation [33, 34]. We overturned a conventional belief
which states that a person’s implicit impressions, once formed, are
durable except in the face of strong counter-evidence [35]. Thus,
people update impressions of robots differently than of other peo-
ple (Figure 4). This result suggests the need for further study in psychology but also bolsters
the notion that robots can calibrate a human’s mental model of them over time.

New architectures for robust robot systems. The unexamined assumptions built into
most robots make implicit trade-offs that frequently go unstudied. I recently articulated some
scientific best practices of good robotics systems research [36] that will help us make informed
trade-offs. Many aspects of the traditional robot software architecture have hardly changed in
fifty years [37]. The rigid assumptions baked into the prevailing architecture can lead to brit-
tleness of performance caused by the system’s sensitivity to unmodeled parameters. Some of
these assumptions are that the robot’s environment is static, that sensors reliably describe ob-
jects, and that scenes are not excessively cluttered with objects. These assumptions are violated
in spaces shared with people. I will revisit the components and interfaces of a robot system
architecture in order to reduce sensitivity to the many sources of uncertainty in the world.
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